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ABSTRACT

Many industrial applications involve soft suspended bodies in viscoelastic fluids. Moreover, many
biological fluids contain high molecular weight macromolecules which impart viscoelasticity to the
fluid, and any cells which are suspended in such fluids again form a suspension of elastic bodies in a
viscoelastic fluid. For control purposes, microfluidic platforms are beginning to utilizing viscoelastic
solvents to perform tasks such as cell focusing [34]. However, despite numerical studies into the kine-
matics of such deformable bodies in viscoelastic fluids, no studies currently consider the rheology of
such systems. Due to the competing effects of the viscoelasticity of the fluid and the elasticity of the
solids it is clear that there exists a non-trivial rheological behavior exhibited by such suspensions. In
this study, we present simulations of dilute systems of deformable particles with viscoelastic suspend-
ing fluids. We compute the effective viscosity and the first/second normal stresses for a suspension of
neo-Hookean particles sheared in a Giesekus suspending fluid up to modest deformations character-
ized by a capillary number, Ca, up to Ca = 0.3. The results indicate that the per particle extra stress
that originates from the suspending fluid (the particle induced fluid stress) remains relatively constant
regardless of deformation. In contrast, the component of the extra stress that arises from the stress
inside the particle (the stresslet) is a strong function of both the the capillary number and the Weis-
senberg number for the parameter space investigated. Note that we find the suspensions "thicken"

and/or "thin" with increasing shear depending on the range of parameter space examined.

1. Introduction

A considerable number of fluids in industrial and bio-
logical applications are viscoelastic in nature. These fluids
often have suspended large polymeric molecules and con-
tain suspended additives which may demonstrate non-trivial
elasticity [4]. In biological applications, such as when cells
are suspended, the soft particulates generally demonstrate
non-negligible elasticity and this creates non-trivial model-
ing challenges even in Newtonian fluids [32]. The rheolog-
ical behavior of suspensions containing elastic particles is
central to the design of many microfluidic devices, which
can be used for both diagnostic and health applications. Re-
cently, adding viscoelastic fluids to cellular suspensions has
been shown to aid in the design of cell focusing microflu-
idic technologies, demonstrating the need to further under-
stand the rheology of suspensions of soft particles that are
suspended in viscoelastic fluids [34].

A number of numerical approaches have been developed
to study particles suspended in Newtonian and viscoelastic
flows. For rigid particles in Newtonian flows, both spheri-
cal and non-spherical particles have been considered through
numerous methods including immersed boundary techniques
and body fitted techniques such as the boundary element
method (BEM) [22, 27, 1, 31]. Additionally, numerical sim-
ulations of interesting dynamic behavior of rigid particles
while suspended in viscoelastic fluids have been demonstrated
in many publications [9, 23, 46, 7, 8]. These studies gen-
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erally remove the suspended particle elasticity as a serious
contributing factor, but a rich dynamic behavior is still ex-
hibited by these suspensions. Particles exhibit novel migra-
tion in the Poiseuille flow of a viscoelastic fluid and non-
spherical particles have been shown to achieve steady fixed
orientations in shear flows where in Newtonian fluids we
would expect steady orbits [9, 23, 46, 7, 8]. Collisions be-
tween rigid particles and walls have also been considered for
viscoelastic fluids through numerical methods [2]. A final
interesting dynamic behavior that has been considered for
suspensions in viscoelastic fluids is particle chaining. This
has been simulated numerically for 2D systems [16, 17]. Note
this all suggests that the physics of deformable particles in
viscoelastic fluids is even more rich. However, to examine
these systems, the aforementioned numerical methods above
need to be redeveloped to include suspended particle defor-
mation and elasticity.

Some tools do exist for studying deformable particles in
viscoelastic and Newtonian flows. In Newtonian fluids im-
mersed finite element methods have been implemented for
solid particles with finite elasticity [53, 54]. Additionally,
a host of immersed boundary and boundary element meth-
ods have been utilized for capsules (infinitely thin sacks with
fluid inside and outside) [10, 3, 32, 30, 36, 44, 25, 26]. In
viscoelastic fluids, methods including immersed boundary
methods for capsules have been developed but no extensions
to soft solid bodies have been presented [34, 33]. Eulerian
based methods have also been used with considerable suc-
cess for deformable particles with a variety of constitutive
models [45, 40, 39, 15]. Deformable particles in viscoelas-
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tic flows have also been studied using body-fitted methods in
simple shear and pressure driven flows [47, 48, 49]. How-
ever to date, no such studies have considered the effective
rheology of such suspensions of viscoelastic fluids with elas-
tic particles. In the present manuscript, we consider this rhe-
ology problem in simple shear, utilizing a previously pub-
lished immersed boundary method to study dilute systems
of suspended deformable particles [41].

Note that one of the reasons that previous researchers
did not examine the effective rheology of these suspensions
is that the theory surrounding how to calculate such effec-
tive properties was being developed. And indeed, recently, a
number of researchers have correctly calculated the rheolog-
ical effects of particle additives to viscoelastic fluids when
the particulates are very rigid. These studies have concluded
that there is a rich rheological behavior primarily associ-
ated with the effects by the particles on the suspending fluid.
The particle will cause shear thickening due to the increased
stress in the fluid surrounding the particle despite the fact
that the average stress in the particle actually decreases [50,
52,51]. The contribution to the extra stress in the suspension
can thus be been broken into two distinct parts: the stresslet
and the particle induced fluid stress (PIFS). The stresslet
is the additional extra stress found within the particle, and
this is the integral measure that is most often calculated in
Newtonian suspensions. The PIEFS is the extra stress cre-
ated in the fluid due to the disturbance created by the parti-
cle; for Newtonian fluids this is always zero. In simple shear
flow, it has been found that the PIFS contribution to the ef-
fective viscosity steadily increases as the elasticity (Weis-
senberg number) of the fluid increases while the stresslet is
found to decrease. This ultimately leads to an overall shear-
thickening effect when particles are added to a viscoelas-
tic suspending fluid in shear flow [50, 51]. Additionally,
these results for dilute suspensions have been considered an-
alytically via a number of perturbation techniques which all
agree with the results presented in the numerical simulations
[11, 35,19, 20, 18]. These numerical studies have also been
extended to examine the effects of multiple particle interac-
tions in non-dilute suspensions [21, 52]. These non-dilute
suspensions show the interesting scalings with the particle
volume fraction. Since most of the extra stress is in a small
region confined to the near particle surface, that scaling of
the viscometrics in the volume fraction collapse up to a con-
siderable volume fraction of about 5% [52]. These systems
have also been considered experimentally, and the results
of the simulations discussed above show qualitative agree-
ment with the experimental behavior of these suspensions
[6, 42, 43].

Note that the rheology of elastic particles suspended in
Newtonian flows have been considered through a number of
studies. A simple perturbation expansion for the shape of an
elastic particle in shear was conducted in 1981 by Murata
et al. [28]. A different analysis by Roscoe et al. consid-
ered the shape and rheology of deformable particles within
certain approximations [38]. The current state of the art an-
alytical result was calculated by Gao ef al. who determined

both the shape and the viscometrics for single initially spher-
ical deformable particles using a polarization technique [12].
The viscometrics in these suspensions (i.e. elastic particles
in Newtonian suspending fluids) behave in a way that runs
counter to that described above for rigid particles in vis-
coelastic fluids. The effective viscosity of soft particles in
Newtonian suspending fluids drop as particles get softer and
the the normal stresses grow nearly linearly with the elas-
ticity parameter (the capillary number). Similar results have
been calculated for capsules numerically for both dilute and
dense suspensions, which suggests that capsules and solid
deformable particles in Newtonian flows behave similarly at
least qualitatively [5, 24].

Due to the competing effects of the capillarity (associ-
ated with particle deformation) and the viscoelasticity of the
suspending fluid there is clearly an interesting problem when
the two features are combined in a soft particle suspension.
In this work, we will consider simulations of dilute suspen-
sions of deformable particles with a viscoelastic suspending
fluid using an immersed boundary formulation [41]. The
viscometrics will be explored as a function of the material
parameters (the capillary number and the Weissenberg num-
ber) and we will compare and contrast these results for soft
particles to the previous results for rigid particle suspen-
sions.

2. Methodology

2.1. Governing Equations

We consider the problem of an incompressible suspended
elastic body in an incompressible Newtonian or viscoelastic
fluid under shear flow. Additionally, the particle will be con-
sidered to be neutrally buoyant so that the density is constant
throughout both phases. The domain of consideration can be
broken into two parts defined to be Q' and Q° which repre-
sent the volume of the liquid and the solid respectively. We
have illustrated this domain below in Fig. 1. The particle in
flow and the appropriate variables that will be discussed in
the remainder of this paper have been illustrated.

We will refer to the total domain including both the par-
ticle and the liquid to be Q. For both phases the equations
are conservation of momentum as well as continuity (which
can be expressed similarly in both sub-domains):

Dv f

pE=V-G xeQf, (1)
p%ZV-O’S x € Q°, 2)
V.v=0 xeQ', Q. 3)

Note that because of Eq. 3, we are restricted to consider-
ing incompressible solid objects and suspending fluids. We
have defined the stress in the solid and liquid to be 6* and o'
respectively. At the boundary of contact between the solid
and the liquid we also require a stress balance to be satisfied.
‘We denote this boundary as 0Q° with an outwardly-pointing
unit normal n. We write this condition as

(6°—06)-n=0 xeo. 4)
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Figure 1: The domain for a suspended elastic particle in shear. The domain is of finite size with domain lengths L,, L, and L,
in each direction. For the dilute simulations we utilize a box size of 5x5x 5D, where D, is the particle diameter initially. The
particle is illustrated in a deformed state with major and minor axis lengths a and b respectively inclined at an angle 6, ,. The

shear flow is applied at the y boundaries by applying a boundary velocity U so that the applied shear rate is y = 2L—U The x and

z boundaries are periodic in our simulations. The solid domain will be referred to as Q' and the fluid domain is Q/. The total

combined domain is Q = Q/ + Q5.

To model a viscoelastic, polymeric suspending medium,
we represent the suspending liquid stress as a sum of a New-
tonian stress with an additional polymeric stress,

T
af:6N+6P:—pI+n<a—v+a—v>+ap. %)
ox 0x

Above, we have defined p to be the hydrodynamic pressure
and 7 to be the Newtonian fluid viscosity. We describe the
extra polymer stress, o¥, using the Giesekus model [13, 4]
which describes the evolution of the extra stress through a
conformation tensor C and a relaxation time A,

o’ = @(C -0, ©)
2
,1(v:+(c—1)+a(C—I)2=o. 7

In Eqn. 7, (vj is the upper-convected time derivative and in
Eqn. 6 we have defined 7, to be the polymeric viscosity.
The Giesekus constitutive equation considers the individual
polymer molecules to be Hookean dumbbells, allowing for
anisotropic drag via the Giesekus mobility parameter @. The
Oldroyd-B model is recovered from the Giesekus model if
a = 0. The Oldroyd-B model, however, displays no shear
thinning, which is a common feature of many polymeric flu-

We also must determine the stress in the solid phase, °.
There are multiple appropriate stress definitions and the re-
lations between them are presented below. The first Piola-
Kirchhoff stress, P, can be obtained from the Cauchy stress
tensor, o, the deformation gradient, F, and J = det(F) using
the identity P = Jo - F~T. The Cauchy stress, o, is related to
the second Piola-Kirchhoff stress, S, using o = %F -S-FT.
We also can construct the right Cauchy-Green tensor C =
F'F which has three spatial invariants I 1C ,IZC , and I3C .

S is calculated using the principle of virtual work as:

oW oW oW
§=227 — 2 [ & 4 1¢2% )y
J9c {<01f 1015)

OW oy OW
—CcZZ 4 fc Y
oI 3 6130}

(€))

For the deformable solid we utilize a slightly compressible
neo-Hookean model with bulk modulus 4, and shear modu-
lus p,, so the strain energy density, W, becomes:

A
W = 7"(15— 1

ids so we will utilize the Giesekus model for our rheological A, cup My (10)
studies. In either case,the zero shear viscosity of the sus- - <7 + Hp> In (13 ) + > (I 1~ 3) .
pending fluid is

Ny =1+ 1, 8)
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2.2. Numerical Implementation

To solve the coupled fluid-solid problem we utilize an
Immersed Finite Element Method (IFEM) that has been out-
lined in a previous paper [41]. For completeness the algo-
rithm will be summarized briefly.

To arrive at the governing equations for this method, we
rewrite Eqns. 1 and 2 as a single equation over the total do-
main as follows:

Dv :
pr:V'O't+fIB x €Q,

(11D
where f'B is the immersed boundary force density. It is
clear that for conservation of momentum to be satisfied ev-
erywhere, the immersed boundary force density must take
the following form:

fB=v.c*-6") xeq. (12)

The discretized IFEM method utilizes two separate grids.
The Lagrangian grid (LG) tracks the particles (Q°) while a
second fixed Eulerian grid (EUL) is utilized for the entire
domain (Q* + Q' = Q). We utilize a finite volume method
to solve for all quantities on the Eulerian grid and finite el-
ements (linear tetrahedral elements) to solve for the forces
on the Lagrangian grid. Since forces, velocities, and confor-
mation tensor components will need to be shared between
these two grids for any of these calculations, interpolation
and spreading operators are required. We will define an op-
erator S” to be the interpolation operator from EUL to LG
and S*” to be the inverse operator.

It is worth noting that mesh resolution for the LG grid
needs to be carefully selected to ensure that ’leaking’ is avoid-
ed. In the context of the IFEM, ’leaking’ refers to an LG
grid that is too sparse (especially when heavily deformed)
which leads to the spreading of forces that are not contin-
uous in nature near the boundary of the solid object. This
almost always leads to an unstable solution. To ensure that
this does not occur, we ensure that all of our initial meshes
are sufficiently fine such that the final deformed mesh does
not exhibit this undesirable ’leaking’ behavior.

We distinguish between the immersed boundary force on
the Lagrangian grid and the immersed boundary force in the
Eulerian domain which are defined to be F'®* and F™®' re-
spectively (Note that force densities are given by a lowercase
f and forces are given by uppercase F).

On the Eulerian domain we therefore solve the following
expression with a third order accurate finite volume scheme
developed at Stanford’s Center for Turbulence research [ 14]:

We are left to determine the values of F'®* for which we
utilize finite elements. If we multiply Eqn. 12 by a test func-
tion w and integrate over the solid body then we retrieve:

IB.s
f; bw,-dQ:/

Through a series of manipulations we can arrive at the final
form of this expression for the force discretely at each node

k:
IB,s _
Fk,i S = _/
Q

Note that in the above expression we have a total of three
contributions to the force if we divide the fluid contribution
into Newtonian and polymer contributions (using Eqn. 5):

- |
’ Q

To calculate the values of PfjN and Pl.t.’P on the Lagrangian
grid, the values of v and C must be known at each Lagrangian
point. These values are therefore required to be interpolated
from the Eulerian grid. Thus, the total immersed boundary
force can be broken into an elastic, Newtonian, and polymer
components:

V(o - ol ) wae  e@ 4

QS

(P,.j. - P}ji) V, N, dQ. (15)

S
0

S f.N f.P
(=P =R VN, 16)
0

1B _ pel N P
F o =F +F, +Fk. 17
The discrete calculation of Pfj Pl.i’N, and Pl.f.’P is con-
ducted on the Lagrangian mesh on the reference configura-
tion. For solid particles we utilize a 4-node tetrahedral mesh
which allows us to discretely write the deformation gradient

(Fig.z") and velocity gradient on each element of this mesh.
The values of the deformation gradient and the velocity gra-
dient are constant over each element volume €, on the ref-
erence configuration and can be written as:

4
Q?
Fo= in,ijNk, (18)
k=1
4
o\ _ 3w VN E] (19)
axj &~ ik VI+Vk 1j .

In the above expressions x; , and u; , are the position and ve-
locity of at each node k on the current configuration (on Q°).
These quantities can then be used to construct the stresses
over each element discretely as:

Qe j— Qe Q?
P2 = Vol fB = Vool 5T [£5] xeQ. (13) By = Fy*Sy
A
Q -9, -T.Q,
If we desire to include viscoelasticity in our simulation, =F,° <7p (J*=1)F"F, i 20)
we solve for the conformation tensor C as six scalar equa-
tions (since C is symmetric) using a log-conformation method. 10 T
Details about this method can be found in previous papers by +up, <5k i~ Fg T F i ‘ )
members of our group [50, 37, 29].
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pING _ g du; \ % N o\ T
i = 0xy, 0x; ki

21

Since the conformation tensor has been directly interpo-
. LPQ
lated to the grid, P” "¢ can be calculated as:

PP 3y Py (Citi — 1) T
J )

—F, 22)

k=1

These quantities can then be utilized to evaluate the integral
expressed in Eqn. 15. Following the completion of a time
step the Lagrangian mesh is updated using the interpolated
velocities via an Adams-Bashforth scheme:

s,n+1

x = xZ’" + At(

3 sn 1 sn—1
P - =v ).

2% T
2.3. Non-dimensional Equations

We can write all of the governing equations in a standard
non-dimensional form. We chose the characteristic length to
be that of the particle D, the characteristic time scale to be y
(The shear rate in the applied flow), the characteristic stress
in the fluid to be the 7y, the characteristic stress in the par-
ticle to be y,. This gives us the following non-dimensional
equations to solve (where non-dimensional variables and op-
erators are given a bar):

ReF:v-af:
’ = @)
—Vp+pVio+ oo V-(C-I) xeQf,
Do 1o _, )
Rem==o-V-6' xeq, (24)
V.-o=0 x€Q, (25)
v
Wi C +(C-I)+a(C-1)? =0. (26)

We also have the following non-dimensional energy density
relationship in the solid:

A A
W= [f -1
dp, -
; @7
14 c\1/2 1 C
- —+1>ln(13) ey,
< 2u, 2
We can construct a total of 9 dimensionless parameters:

The Reynold’s number (Re = %D”), the Weissenberg Num-
0

ber (Wi = A7) the viscoelastic viscosity ratio (f = #), the
P

mobility parameter (@), and the capillary number (Ca = 'Z)—y)
P
appear in the evolution equations. Additionally, a ratio ap-
, L , A
pears in the constitutive equations for the solids: ”—” Lastly,

P
the three confinement ratios can be constructed from the ge-
i ¢ D, D, D,
ometric parameters ( 7. L, L. ).
For the studies presented in this paper the Reynold’s num-

ber will be smaller than 10~!, but the capillary number and

the Weissenberg number will be free to vary. The capil-
lary number quantifies the deformability of the particle and
the Weissenberg number quantifies the elasticity of the fluid.

. . A A
We also set the dimensionless parameter M—" to be sufficiently

P

large that it does not effect any calculated results for all of
our simulations presented in this study. The confinement pa-
rameters will all be set to 0.2 in this paper unless otherwise
noted.

2.4. Calculation of Viscometrics and Shape
Parameters

When examining particles in shear flow there are a se-
ries of parameters that we calculate both related to the parti-
cles shape and to the viscometrics. The particles shape will
largely be considered for validation purposes as this has been
explored in previous publications [12]. The two deformation
parameters that are of interest are the Taylor Deformation pa-
rameter (D) and the inclination angle (8). For an ellipsoidal
particle with major axis ¢ and minor axis b in the xy plane,
the Taylor deformation number is defined as:

a—-b>b
D= . 28
a+b (28)
The major and minor axes a and b are determined in two
steps: first, the moment of an inertia of the capsule is calcu-

lated using the relation [36, 5]:

1 S N N S S N
I,= 5 Zt [(x - x7) (%} - mp) T= ) (3 - )] (29)

and then an ellipsoidal body is found with the equivalent mo-
ment of inertia which requires finding the eigenvalues of I,.
Specifically, a and b are found as the knowns of three ana-
lytical equations which relates the eigenvalues of I, to the
3 components of the moment of inertia for a perfect ellip-
soid. The inclination angle is similarly calculated from these
eigenvalues.

We also need to calculate viscometrics. We define the
dimensionless volume average stress in a suspension to be
the following:

1f90'd£2
_7 nov
30
_lfgf ofdQf +i/9“ &5d 08 (30)
V. nor Voongr

We can rewrite this expression as an integral over the
total domain and the particle domain:

1 Joo'dV | [o(0® —6dQ?
= — + — _ :
V. ny Vv noY

If we are interested in the per particle contribution to the
stress than we can rewrite the expression:

<0 >=

3D

<5>=<5">
Joat =c™av [, (c%—ohdas (32)
+ - + - .
HoY Moy
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Here, the fluid stress if the particle were absent in the flow
is defined as 6. We can further re-write this expression,
using the particle volume fraction ¢, as:

<6 >=<5"> +¢T + ¢S. (33)
Which gives us the following:

B Jo(e' = ethav

Y e, (34)
0
s _ Af s

S = M_ (35)
Moy ¢

In the above expressions we have defined the particle in-
duced fluid stress to be X and the stresslet to be .S. In pre-
vious work these quantities have been defined in this same
manner modulo a factor of 4—”, but we will utilize the above
definitions throughout this study [50, 51]. The standard rela-
tive non-dimensional viscometric functions on a per-particle
basis will be presented in this study and these are defined as
follows:

<op>—-<ol,>

Yoy = : (36)
eff Hovd
i <oy >—<022>—(<0'm11>—<0'£(2)>)
! nov ® ’
(37
. <op>—<oy>— (<0 >—-<0)>)
) = . .
nov®
(38)

Lastly, we define the first and second normal stress coef-
ficients which will be discussed briefly when comparing to
previous work with rigid particles:

1,

Y, = —, 39

' Wi 39
IIQ

27 Wi (40)

These common coefficients are discussed elsewhere such
as by Yang et al. [50]. However, when considering results
with finite particle elasticity but no viscoelasticity in the fluid
these quantities above are ill-defined (due to a division by
zero). So for the complete case where both the capillary
number and the Weissenberg number are varied we will dis-
cuss the first and second normal stress differences, as op-
posed to the normal stress normal stress coefficients.

2.5. Mesh and Domain Convergence

There are two main types of convergence that need to be
considered for the study of particles in a shear flow while
utilizing the immersed boundary method. While the im-
mersed boundary method scales well in particle number and
has many advantageous properties, the lack of a body fit-
ted mesh leads to the need for very refined Eulerian meshes

0.5
04]
—
= 03
(<]
2
=
<
T .
0.2 o Wi=2
k, = .93
q Wi=0
k,=.99
0.04 0.06  0.08 0.1

Mesh Size

Figure 2: The relative error (error relative to the extrapolated
value) in the effective viscosity plotted against the mesh resolu-
tion for two deformable particle simulations (Ca=0.025) where
the Weissenberg number is 2 and 0 on a log-log plot. Solid
lines with scalings of .93 and .99 (best fit scalings) are added
to guide the eye. Both the high Weissenberg number and the
Newtonian case are converging at a nearly linear rate. For the
remainder of our simulations we will extrapolate only using the
two coarser meshes and use a convergence rate of 1.

for sufficiently converged results. To reduce the need for
extremely expensive mesh calculations we utilize Richard-
son extrapolation to calculate all viscometric quantities pre-
sented in this paper. For a generic viscometric y we can cal-
culate the approximate rate of convergence for our method,
ky, using:

17 (?) —w(h)

tho — 1

w(2)-ww

E— “4n

h h
v(3)r ~v(3)r
t S
In the above expression the rate of convergence is k, and the
three mesh sizes tested are given by A, ?, and % where s and
t are distinct and larger than 1. We would like to ensure that
our method is converging as expected for both a Newtonian
case and a chosen high Weissenberg number case since in
the simulations we conduct we have both finite fluid elas-
ticity and particle elasticity. We have calculated the rate of
convergence defined by Eqn. 41 for a Newtonian suspend-
ing fluid and also for a suspending fluid with a Wi = 2 and
we found the rate of convergence to be .99 and .93 respec-
tively utilizing meshes with 10, 20, and 40 points across the
particle diameter. These results for the shear viscosity are
presented in Fig. 2 as well as the best fit scalings.

We actually anticipated this nearly linear result since the
linear tetrahedral elements utilized in the immersed bound-
ary formulation should produce linear convergence in our
problem (despite higher order elements being used in the
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fluid solver). We therefore employ a linear convergence rate
to extrapolate our results on two mesh sizes and thus calcu-
late the desired viscometric function as:

o (d)-vm

v . (42)
This procedure is conducted to reduce the number of very
costly simulations at a highly refined mesh size. It should
be noted that the error that is introduced by assuming the
convergence rate is exactly 1 as opposed to .9 or 1.1 intro-
duces an error no larger than 1.5% in the final calculated
value. This convergence rate approximation error is thus on
the order of errors we make due to the domain size and our
threshold for reaching steady state. We utilize boxes that are
5% 5% 5D, for all of our extrapolations where 10 and 20
points across the particle diameter are utilized.

We additionally need to consider the effect of domain
size on the results. We considered box sizes of 5X5X 5D,
and 10x 10X 10D, and 20 x 10X 10D, at Wi=2 and Wi=0
and concluded that no reported viscometrics changed within
2%. The largest errors incurred are generally for the second
normal stress differences due to the fact these quantities are
very small. We therefore consider a box size of 5x5x5D,
to be sufficiently large (volume fraction, ¢ = .0041) to be
simulating the dilute case.

Although the results that we will present are at steady
state, the simulations that are conducted are actually tran-
sient. We start with the entire domain initially at rest and
then at + = 0 begin to move the upper and lower walls.
When the calculated viscometrics are no longer changing
more than 1% over a dimensionless time then the results are
considered to be at steady state. These steady state results
are then input into the Richardson extrapolation scheme de-
scribed above.

3. Results and Discussion

3.1. Validation: Newtonian Suspending Fluids
with Deformable Solids

The simplest validation case to consider is the case of
a single spherical deformable particle suspended in a New-
tonian fluid. Previously, Gao ef al. has considered the an-
alytical solution of this problem and presented the results
over a range of capillary number [12]. Below in Fig. 3 the
results from a series of our simulations in a domain size of
5%5X5D, are presented. In Fig. 3a the Taylor Deformation
parameter (Eqn. 28) is plotted vs. capillary number. Gao’s
results are presented as a blue dashed line and the simulation
results are plotted as open symbols. Additionally, in Fig. 3b
the inclination angle is plotted as a function of Ca. In both
instances the agreement is good across a range of modest
Ca numbers. Notable features in these plots include that the
deformation increases nearly linearly with the Ca number
(a slightly less than linear deviation can be seen for higher
Ca). The inclination angle also gets smaller (the particles
turn more into the flow direction) as the Ca increases.

Gao et al. also presents the results for the viscometrics as
a function of Ca. Below in Fig. 4 the results for the effective
viscosity and the first and second normal stress differences
are presented as a function of Ca number. Once again the
analytical results are presented as a blue dashed line and the
simulation results are shown in open symbols. The agree-
ment is again excellent across all parameters presented. Soft
particles in a Newtonian flow show decreased effective vis-
cosity as the capillary number increases. This reduction is
entirely due to the stresslet since the particle induced fluid
stress (PIFS) for Newtonian fluids is always zero. The re-
duction in the 1-2 component of the stresslet with increased
capillary number and thus increased particle deformability
is clearly due to the reduced 1-2 component of stress within
the particle. The first and normal stress difference both grow
nearly linearly in magnitude but have opposite signs. These
growing functions can be explained by the increased incli-
nation presented in Fig. 3. As the particle aligns more in the
flow the stress differences become more pronounced as the
particles principle axes become more aligned with the axes
of the flow.

It is worth noting that the results presented above are
very insensitive to increased box size (changing by less than
2%). Similar results were seen by Villone ez al. in their work
that includes confinement [47]. Numerically, the parame-

ter ”—" maintains incompressibility of the solid if it is set to

largepvalues. The results presented above are all insensitive
to this parameter except for the inclination angle. It appears
that prescribed incompressibility is important to capture the
correct inclination angle (i.e. if the parameter is reduced in
magnitude the particles incline at a higher angle and thus are
less aligned with the flow).

3.2. Validation: Viscoelastic Suspending Solutions
with Nearly Rigid Particles

The next validation study we consider is the limit of a
nearly rigid particle (i.e. capillary number approaching zero)
but suspended in a viscoelastic fluid. The simulations pre-
sented below are again for boxes in a domain of 5X5x 5D,
and at Ca=0.025. The results of these simulations are com-
pared to are the dilute results from Yang et al. [50]. In this
particular case, the viscoelastic fluid will have a mobility pa-
rameter a = 0.015, and § = 0.69 as utilized by Yang et al.
(benchmarked against a real viscoelastic fluid used by Dai e?
al. [6]). Below in Fig. 5, we see that we have again good
agreement between our simulations which are presented in
open symbols and the data from Yang which is presented as
lines.

In Fig. 5a we see the effective viscosity as well as its rel-
ative components from the calculations of Yang er al. [50]
compared to the immersed boundary simulations. The rela-
tive viscosity increases overall as viscoelasticity increases,
but the stresslet drops while the PIFS increases. We see
nearly quantitative agreement with the work of Yang (who
utilized body-fitted grids for these simulations). Fig. 5b
shows the same comparison for the first normal stress co-
efficient and Fig. 5c compares the second normal stress co-
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Figure 3: The shape parameters for a dilute sphere in a simple shear flow from our simulations as open symbols as compared
to the analytical results by Gao et al. presented as dashed lines. [12]. a) We consider the Taylor deformation parameter, D,

as a function of Ca. b) We consider the inclination angle, 0

Xy’

as a function of Ca. We see good agreement up to modest Ca

numbers. The particles align more heavily in the flow and deform more as the Ca number increases.

a)

2.6
FAA “A
2.4t AR
~
~
5 AL
< 29} AN
N
A Y
A Y
\
2+ A\\
\
= = =:Gao et al. .
A IFEM AN
1.8 - - - A
0 0.1 0.2 0.3 0.4
Ca

b)
4 i
'
X
’
3t Rl
ALl
’
’
2r ,"
o ’
= A7 = = =-Gao et al.
= 1l Ve A IFEM
E A,
A
O'A,A
-~A"‘~-.
1 E
0 0.1 0.2 0.3 0.4
Ca

Figure 4: The viscometrics for a dilute sphere in a simple shear flow from our simulations as open symbols compared to the
analytical results by Gao et al. presented as a dashed line. [12]. a) The effective viscosity as a function of Ca. b) The first and
second normal stress differences as a function of Ca. We see good agreement across modest Ca numbers. The particles align
more heavily in the flow and deform more as the Ca number increases. This reduces the effective viscosity and increases the

magnitude of the normal stress differences as Ca increases.

efficient to our simulations. The normal stress due to the
small amount of deformability of the particle at Ca=0.025
has been subtracted from the results to test agreement with
the rigid result. Again good agreement is seen between the
previous results and our work.

3.3. Rheology of a Dilute Suspension of Soft
Particles in a Viscoelastic Suspending Media
Next, we consider the problem with both finite deforma-
bility (capillary number) and finite Weissenberg number. We
know from previous literature and the validation cases pre-
sented above that for many of the parameters of interest these
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and B = .69. We see good agreement for all components of the viscometrics including the particle induced fluid stress (PIFS)

and the stresslet.

two features are competing with one another. Therefore it
will be of interest to see which effect dominates in different
flow parameter regimes.

We desire to plot all of our results as a function of one
shear rate dependent parameter and a second material pa-
rameter (i.e. a dimensionless number that does not depend
on shear rate). This presentation will be practically useful
since as we vary the shear rate in a realistic experiment (as
in a cone and plate or parallel plate rheometer) both the cap-
illary number and the Weissenberg number will be chang-
ing simultaneously. However, a material parameter can be
defined as constant at the beginning of such an experiment.

We thus define the following dimensionless parameter:

)
Ca n

This parameter is a material parameter and will serve to rep-

resent how much elasticity is in the fluid vs. that in the sus-
pended particles.

We will consider the same fluid utilized in the validation

study cases: a Giesekus fluid with ¢ = .0039 and f§ = 0.69.

All simulations conducted will be in a box size of 5X5X5D,,.

(43)

3.3.1. Viscometrics for Different Values of '

We consider the effect of viscoelasticity on the three vis-
cometric functions: the per particle effective viscosity and
the first/second normal stress differences. In Fig. 6a we see
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Figure 6: The viscometrics plotted for four values of T from our simulations as different open symbols. In a) we plot the per
particle effective viscosity vs. the capillary number. We see that the suspensions shear thicken and then proceed to shear thin
at higher shear rates. In b) and c) we plot the first and second normal stress differences as a function of Ca. The normal stress
differences both become bigger (or become less negative) due to the addition of fluid elasticity. The analytical result for T' =0

from Gao et al. is included as a dashed line.

the per particle effective viscosity plotted vs Ca for four dif-
ferent values of I'. The result for a Newtonian fluid is in-
cluded as a dashed line from Gao et al. We see that the ef-
fect of adding fluid elasticity to the problem is for the system
to initially shear thicken but then ultimately begin to thin as
the shear rate (Ca) becomes higher. This demonstrates that
the particle elasticity (i.e. its deformation and internal stress
contributions) overcome the effects of the viscoelasticity in
the suspending fluid that we have seen is the dominant effect
for strictly rigid particles.

It is worth noting that at low but non-zero values of I"
the shear viscosity behaves in a very non-trivial way with
multiple inflections in the behavior. This behavior can be
broken into three distinct phases. Initially, the system be-

gins to shear thicken. We hypothesize that the fluid elastic-
ity around the particle is leading to increased viscosity sim-
ilar to that seen for rigid particles since initially the particle
will remain approximately spherical. Then a decrease is ob-
served which corresponds to the particle elasticity beginning
to appreciably reduce the viscosity of the suspension. The
third phase is the subsequent reduction in the thinning slope
and is likely due to the increased thickening in the fluid ob-
served as Wi increases (this will be explained more carefully
when we consider the PIFS later in this study). This interest-
ing behavior is lost in our calculations at higher I" since the
elastic fluid around the particle has already substantially in-
creased in stress and reached a near maximum before the first
thinning inflection. Therefore the higher I" curves see only
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Figure 7: The viscometrics compared to the results by Yang et al. [50]. In a) we plot the per particle effective viscosity vs. the
Wi number. We see that the suspensions shear thicken and then proceed to shear thin at higher shear rates. In b) and c) we
plot the first and second normal stress coefficients as a function of Wi. As I" approaches infinity we see that the results approach
results from Yang et al. plotted as dashed lines. Note that in b) and c) to make a comparison to Yang's work we have plotted
the normal stress coefficients (normal stresses divided by Wi) to make this comparison where we have previously been discussing

normal stress differences.

two distinct phases where the fluid elasticity grows initially
and then ultimately decreases due to the particle elasticity at
higher shear rates.

In Fig. 6b/c we see the first and second normal stress
differences plotted for four values of I'. Increasing I" leads
to increasing magnitudes of the first normal stress difference
and decreasing magnitude of the second normal stress differ-
ence. Note that for rigid particles elasticity in the suspend-
ing fluid increased first normal stress differences, and we
see that fluid elasticity additionally increases the first nor-
mal stress difference even more when particle elasticity is
considered. The second normal stress difterences follow a
similar trend where they become slightly less negative. In

our validation calculation, we demonstrated that rigid parti-
cles show a slightly positive but small second normal stress
so it logically follows that the second normal stress differ-
ence would be larger (less negative) when the effect of fluid
elasticity is compounded with finite deformability of the par-
ticles.

We can also plot these viscometric results against Wi
number as opposed to Ca number. This presentation will
make the result more comparable to the previous works by
Yang et al. [50]. Presented in Fig. 7 we see the three vis-
cometrics plotted for varying I', but instead as a function of
Wi. The results indicate that as I gets very large the results
of Yang et al. (presented as dashed lines) are approached
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(which is sensible since Yang’s results represent I’ — oo.

When discussing the shear viscosity behavior it was pro-
posed that there were distinct regions where the elasticity of
the particle and the elasticity of the fluid were competing
in determining the rheological behavior. We can quantify
these effects by considering the PIFS (X) and the stresslet
(.S) contributions to each of the viscometrics separately. We
will first consider the stresslet contribution to the the visco-
metrics and discuss the implications in relation to the total
viscometric functions plotted in Fig. 6.

3.3.2. Stresslet Contributions to Viscometrics

As discussed previously, the stresslet quantifies the amount
of extra stress is in the suspension due to the stress inside
the particle. We can see this from Eqn. 32 rather obviously
where the integral over the particle volume has been directly
labeled the stresslet.

In Fig. 8 we plot the stresslet contributions to each visco-
metric against the capillary number for the same four values
of I" that were utilized previously. In Fig. 8a the contribu-
tions to the per particle effective viscosity are plotted. We
see that the stresslet is the only contributor to the total vis-
cosity for the Newtonian suspension (I" = 0). The dashed
line indicates the analytical result from Gao [12]. However,
as additional suspending fluid elasticity is added to the sys-
tem the stresslet begins to decrease (i.e. "shear-thin") even
faster than the Newtonian case. As was noted in the introduc-
tion, these systems of deformable particles with viscoelastic
suspending fluids lead to less deformation and more align-
ment with the flow direction as the Wi increases [48]. This
is consistent with what we see in this plot since as the Weis-
senberg number increases I" increases, which means we ex-

pect less deformation. For a given particle, if we hold the
modulus fixed and decrease the deformation we expect there
to be less average stress in the particle and therefore a lower
stresslet contribution. Since the reduction in deformation ul-
timately plateaus at high Wi in all numerical studies to date,
it is possible that this effect will converge to a similar slope
at higher values of I', however, we have not explored this
parameter regime.

We can also see the trends for the first and second nor-
mal stress differences in Fig. 8b. We see that the magni-
tude of the stresslet increases relative to the Newtonian case
for both the first and the second normal stress differences.
This can again be explained by the kinematics of the parti-
cles which have been previously discussed in Villone ef al.
[48]. The particles align more with the flow as the Wi is
increased and again this effect begins to diminish for very
high Wi. This translates into increases in magnitude to the
normal stress differences as the principle axes of the particle
begin to align with the principle axes of the lab frame. This
inclination effect however ultimately plateaus in Wi, so the
stresslet contributions to the normal stresses subsequently
begin to plateau at high I'.

3.3.3. PIFS Contributions to Viscometrics

We now will consider the effect that the surrounding fluid
has on the the total viscometrics. We will consider the parti-
cle induced fluid stress (PIFS) contribution for all three vis-
cometrics, but it should be noted that this integral is not tech-
nically just over the fluid for a deformable particle (it actually
is for the rigid particle case). The integral presented in Eqn.
33 is actually over the whole domain and includes a term
that is the stress inside the particle if the solid actually had
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Figure 9: The PIFS component of the three viscometrics plotted as a function of Ca. The different values of Gamma are plotted
as different open symbols. a) The PIFS component of the effective viscosity. b) The PIFS component of the first normal stress
difference. c) The PIFS component of the second normal stress difference.

a fluid constitutive model. This term is easy to calculate in
the immersed boundary method since we already have all of
these stresses constructed over the Eulerian domain, but in a
body fitted code these stresses would have to be calculated in
addition to the ones utilized by the solver. The PIFS term in
totality represents how much extra stress is in the fluid sur-
rounding the particle and how much extra stress is produced
by particle since it does not follow the fluid constitutive law.

In Fig. 9 we see the PIFS contributions to the three vis-
cometrics. In 9a we see the PIFS contribution to the shear
viscosity. It should be noted that for a Newtonian fluid the
PIFS is always zero (even for deformable particles). We see
that the PIFS increases at a faster and faster rate in Ca as I’
is increased. This is expected since as I" becomes larger the
Wi number grows which means the thickening in the fluid is
more pronounced.

In Fig. 9b/c the PIFS contributions to the first and sec-
ond normal stress differences are shown. Similar trends are
seen for both of these viscometrics. The increased value of
I leads to more and more stress to accumulate in the fluid
surrounding the particle.

In the case of the PIFS, we demonstrate a very important
collapsing of the data that occurs if we plot the data against
Weissenberg number instead of capillary number. In Fig. 10
we see the same data presented in 9 but plotted against Weis-
senberg number. The collapse in this particular instance is
perhaps surprising since this suggests that the extra stress
found outside of the particle in the disturbed fluid region is
actually not a strong function of the deformed state of the
particle (Note the exact opposite result was found for the
stresslet contribution).

Previously, Yang et al. found that the PIFS term for
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values of Gamma are plotted as different open symbols. a)The PIFS component of the effective viscosity. b) The PIFS component
of the first normal stress difference. c) The PIFS component of the second normal stress difference. We see that all of the results
collapse onto single master curves when plotted against Wi as opposed to Ca as in Fig. 9. This suggests that the PIFS part of

the problem is very insensitive to the Ca number.

rigid particles was due to regions of extreme polymer stress
around the particle that did not grow in size with Wi and
that these regions of high stress were found in regions of
closed streamlines around the particle [51]. In Fig. 11 we
see a similar result for our simulations. In panel a) through
¢) the results for a fixed Wi=1 are shown for three differ-
ent Ca numbers: 0.025, 0.05, and 0.2. The contours plotted
are the shear stress in the fluid region outside of the parti-
cle. The data collapse suggests that these PIFS regions are
all approximately the same at least up to modest Ca<0.3 and
we can see this visually in Fig. 11. Itis quite surprising even
with the relatively substantial deformation illustrated in Fig.
11c that we see a very similar fluid stress profile in the fluid
when compared to the nearly rigid particle case. The closed

streamline regions and the extreme stress boundary layers
are still present even for the deformable particles and they
do not change in a substantial way over the range of param-
eters considered. In fact, when compared to the results from
Yang et al. we see that the results presented are in fact in
nearly perfect agreement with those from the rigid particle
calculations. Fig. 12 shows the collapse of the shear vis-
cosity PIFS calculations to similar results for a rigid particle
from Yang et al. (adjusted by a factor of 4?”). This suggests
that the PIFS can be understood entirely from rigid particle
calculations and thus therefore almost all of the interesting
new rheological results are due to the non-linear effects in
the stresslet calculations.
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Figure 11: Contour plots of the shear stress component in the fluid. Similar to results by Yang et al. [51] we see that the
regions of stress in the particle are accumulated close to the particles surface in small regions. The panels a)-c) show the shear
component of the stress for 3 different Ca numbers of 0.025, 0.05, and 0.2. Panel d) shows the same plot as panel c) where a
select number of streamlines have been added to illustrate that the regions of high stress are within closed streamline regions.

4. Conclusions

The rheology of a dilute suspension of elastic particles
in a Giesekus fluid is considered through the use of an im-
mersed finite element method. The method has been vali-
dated in both the Newtonian limit against previous work by
Gao et al. [12] and against the work by Yang et al. for di-
lute suspensions of rigid particles in viscoelastic fluids [50].
Good agreement was found for these test cases across the
range of parameters considered.

The results for the rheology of dilute suspensions of elas-
tic particles in Giesekus fluids show an interesting non-linear

combination of effects. The particle induced fluid stress (PIFS)

is found to be largely invariant to the deformation of the par-
ticle (up to Ca=0.4) which makes the results presented by

Yang et. al [50] concerning particle induced fluid stress for
rigid particles largely applicable even when the particle de-
forms. This indicates that the mechanism indicated by Yang
et al. is also applicable to elastic particles —i.e. regions of
strong stress accumulate near the particle in closed stream-
line regions in shear flows.

However, the stresslet component of the viscometrics is
a strong function of both the viscoelasticity in the suspend-
ing fluid and the elasticity of the particle. As viscoelasticity
is increased for a given particle deformability the particles
aligns in the flow direction and deforms less (as is seen by
Villone et al. as well [48]). The consequence is the shear
component of the stresslet decreases as viscoelasticity of the
matrix increases and the stresslet components of the normal
stress differences increase as the viscoelasticity increases.

C. J. Guido et al.: Preprint submitted to Elsevier

Page 15 of 17



Rheology of Soft Bodies in Viscoelastic Fluids

A T=0
—e—I =5
—&—1T =20
' =40
Yang

6 8

Wi

Figure 12: The particle induced fluid stress component of the
effective viscosity as a function of Wi for all of the simulations
conducted. Different values of T" are presented as different
open symbols. We can see that they collapse well onto a
single curve and that this curve corresponds with the result for
strictly rigid particles which is illustrated as a solid black line.

These effects are not a simple superposition of the rigid re-
sult and the deformable result from a Newtonian flow indi-
cating a substantial non-linear coupling between these ef-
fects.

In total the simulations suggest interesting non-linear be-
havior in the shear viscosity depending on the relative ratio
of the elasticity in the fluid to the elasticity in the particle,
I". The shear viscosity in such a suspension should at first
rise, and then rapidly decrease with increasing shear rate.
The normal stresses both get larger as elasticity is added to
the suspending fluid compared to the Newtonian result. The
competition between the two different sources of elasticity
and its effect on the stresslet component of the per particle
extra stress is the primary component of this new and inter-
esting behavior.
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